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Due to their inability to represent strain localization correctly, conventional computational methods yield 
mesh-dependent results in ductile failure problems. In the computational framework presented here, 
localization behavior is predicted using a material stability analysis and localized deformation modes 
are represented accurately and efficiently by embedding localization bands within larger computational 
elements. This framework also allows the use of different constitutive models inside and outside the 
localization band.

The formation of strain localization bands is often observed in metals 
undergoing high-rate plastic deformation. The material in these 

narrow bands undergoes intense plastic straining. In many cases strain 
localization is caused by–and subsequently interacts with–material 
softening mechanisms (e.g., void nucleation and growth, thermal 
softening), leading ultimately to failure. Thus, the effective treatment 
of ductile failure problems in a computational setting requires that 
localized deformation modes be represented accurately.

With conventional finite element techniques, this can only be achieved 
by resolving localization bands explicitly, that is, via mesh refinement, 
which is prohibitively expensive given the small width of a typical 
localization band (10–30 µm) compared to the characteristic dimension 
of a specimen (~10 mm) or structure (~1 m). In addition, conventional 
methods are known to yield mesh-dependent results, for example, 
predicted localization bands tend to follow mesh lines.

 To circumvent these difficulties, an explicit finite-element formulation 
for dynamic strain localization was developed, based on the assumed-
strain technique of Belytschko et al. [1]. In this formulation, a material 
stability analysis is used to check for incipient localization behavior 
at each material (Gauss quadrature) point. Notably, the location and 
orientation of the nascent localization band are also determined by the 
same stability analysis, instead of being dictated by the dimensions or 
orientation of the mesh.

In the absence of localization, the strain field within a given element 
remains continuous. Once the onset of localization is detected, however, 
the discontinuous strain mode associated with the nascent localization 

band is added to the element’s strain field and is allowed to evolve 
gradually. This approach ensures a smooth transition from uniform 
to localized deformation. In addition, embedding localization bands 
in this manner, within significantly larger computational elements, 
allows spatially converged solutions to be obtained at a reasonable 
computational cost. It is also important to note that the width of 
the localization band is treated as a material parameter, completely 
independent of the mesh size.

As a numerical example, we consider a rectangular block 
(length = 0.14 m, width = 0.1 m) subjected to plane strain extension. 
The material is assumed to follow the elasto-plastic material law 
illustrated in Fig. 1, and has the following material properties: Young’s 
modulus E = 200 GPa, Poisson’s ratio υ = 0.29, isotropic hardening/
softening moduli Kh = 220 MPa, Ks = -66 MPa (with a negative value 
signifying softening), yield strength σy = 300 MPa, ultimate strength 
σu = 310 MPa, and mass density ρ = 7850 kg/m3.

Exploiting symmetry to reduce computational cost, only the upper right 
quadrant of the block is modeled. An upward velocity of 2 m/s is applied 
to the upper boundary, as shown in Fig. 2. The localization band is 
assumed to have width b = 3.33 mm. The material strength is reduced 
in the bottom-left element (σy = 200 MPa, σu = 210 MPa) to simulate the 
existence of a material imperfection, making this element a favorable 
nucleation site for localization bands.

To examine the ability of the formulation in alleviating mesh dependency, 
the problem is first solved using a coarse mesh consisting of 5×7 
elements, and then repeated using a mesh including 10×14 elements. 

Fig. 1. Illustrated elasto-plastic 
material law.
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The results of these two simulations are then compared to the reference 
solution that is obtained by explicitly resolving the localization band 
using a fine mesh consisting of 15×21 conventional elements.

The load-deflection curve and the deformed shape of the block, as 
predicted by each of the three meshes, are shown in Figs. 3 and 4, 
respectively. It is clear from Fig. 3 that the formulation is successful 
in capturing the correct response of the overall structure throughout 
the loading process, including the softening regime. It can also be seen 
from Fig. 4 that the location and orientation of the localization band, 
and its effect on the overall deformation of the structure, are captured 
reasonably well, even by the coarsest mesh.
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Fig. 2. Exploiting symmetry to reduce 
computational cost, only the upper 
right quadrant of the block is modeled. 
An upward velocity of 2 m/s is applied 
to the upper boundary. Shaded area 
represents the localization band that 
forms as the block deforms. Elements 
where the material stability analysis 
indicates that localization behavior was 
initiated at some stage of the loading 
process, at all (four) Gauss points, are 
shown in the darkest shade. Lighter 
shades signify instability at a smaller 
number of Gauss points.
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Fig. 3. The load-deflection curve, as 
predicted by each of the three meshes.

Fig. 4. The deformed shape of the 
block, as predicted by each of the three 
meshes.


